Computer Physics Communications Program LibraryPrograms in Physics & Physical Chemistry |

[Licence| Download | New Version Template] aaft_v1_0.gz(5 Kbytes) | ||
---|---|---|

Manuscript Title: Exact calculation of the penetrability through triple hump fission
barriers. | ||

Authors: G.D. James | ||

Program title: TCNT | ||

Catalogue identifier: AAFT_v1_0Distribution format: gz | ||

Journal reference: Comput. Phys. Commun. 40(1986)375 | ||

Programming language: Fortran. | ||

Computer: IBM 3084Q. | ||

Operating system: MVS, TSO. | ||

RAM: 8K words | ||

Word size: 32 | ||

Keywords: Nuclear physics, Potential barrier, Penetrability, Low energy, Scattering, Double hump barrier, Weber parabolic cylinder, Heavy ion, Triple hump barrier, Functions, Inelastic. | ||

Classification: 17.7. | ||

Nature of problem:Exact calculation of the penetrability of a triple Lump potential barrier expressed by five smoothly joined parabolic functions is carried out by TCNT. Such a barrier defines the nuclear potential energy, as a function of the nuclear deformation which leads to fission, for certain isotopes of uranium and thorium. It can also represent the potential landscape defining two parts of the third fission potential barrier minimum which are separated in the direction of nuclear mass asymmetry. | ||

Solution method:For a barrier expressed by smoothly joined parabolic functions the Schrodinger equations are transformed into Weber equations for which exact solutions, known as Weber parabolic cylinder functions, are calculated from series expansions. The method is an extension of that used by Cramer and Nix for a double hump barrier. | ||

Restrictions:Details are given in the text of the accuracy with which the Weber functions calculated using double precision arithmetic satisfy the Weber equations. | ||

Unusual features:None | ||

Running time:For a fixed barrier, 150 penetrability calculations for a range of excitation energies took 3.78 s CPU time. |

Disclaimer | ScienceDirect | CPC Journal | CPC | QUB |